Implementation of a Parallel Ant Colony Algorithm Using CUDA and GPUs to Solve Routings Problems Problem
Julio Ponce1, Francisco Ornelas1, Alberto Hernández2, Humberto Muñoz1, Alberto Ochoa3, Alejandro Padilla1, Alfonso Recio1
1 Universidad Autónoma de Aguascalientes, Aguascalientes, México
{jcponce, fjornel, apadilla} @correo.uaa.mx, {hmuntista, li.alfonso.rh}@gmail.com
2 Universidad Autónoma del Estado de Morelos, Morelos, México jose_hernandez@uaem.mx
3 Universidad Autónoma de Ciudad Juárez, Chihuahua, México
Alberto.ochoa@uacj.mx
Abstract. At present routing problems is part of a large group of classical problems, due to its constant appearance in real life applications [1], so actually have implemented a variety of algorithms focused in these problems, as is the Ant Colony algorithm which has shown good results. However such algorithms are limited and time-consuming as it is a constructive algorithm because in instances too big problems that consume large computational resources consumed by the number of calculations that must be performed. This paper show an algorithm implemented under a parallel architecture currently offered video cards (Graphic Process Unit, GPU) environment using the Compute Unified Device Architecture (CUDA), which allows having at our disposal a great resource tool used to solve problems with a high degree of computational complexity [2].
Key words: Parallelization, CUDA, routing problem, Ant Colony.
1. Introduction.
The routing problems are not only classical problems in optimization theory and scientific environment, these are problems that have a large number of real-life applications, for example, some are: tourist routes, garbage collection, routing networks, product distribution routes by companies, either finished products or raw materials, and others [3]. In this case we will focus on solving the transport routing problems based on the Travelling Salesman Problem (TSP) using ant colony algorithms.

The importance of this research proposal is given by the need for software tools that help companies and organizations in general to optimize resources such as: time, space and money. Currently has basic research on the development of different optimization algorithms such as: Genetic Algorithms (GA), Ant Colony Optimization (ACO), Estimation of the Distribution Algorithms (EDAs), among others. In particular Ant Colony Algorithms are based on the way how they create short routes from their anthill to a food source [4], these algorithms have been shown to give good results in a variety of applications among which are the TSP problems and the knapsack problem, however these algorithms are limited in their implementation due to teams where they test, so it is critical to integrate them into a system to process instances of these problems, with order to contribute more in the scientific as well as real applications that support the development of companies within the entity. This would be possible if there were equipment for testing on multiprocessor architectures / multi-core, using the advantages offered by parallel processing for several of these algorithms.

It is a fact that businesses have the need to be ever more competitive, so you need to implement and seek new software tools that enable them to meet their goals, the programming of these algorithms in a parallel on multiprocessor architectures / multicore can be the solution to various problems industries or public institutions.

On the other hand there is the possibility to exploit the processing power of the new supercomputers that incorporate multiple microprocessors and GPUs, which represent an increase in the number of processes performed by the current computer systems in a short space of time, which encourages high energy savings and increased processing speed parallelizable algorithms, also is has a large number of algorithms for solving NP-Hard problems developed by leading researchers worldwide that can be applied to solve a variety of real-world problems.

The importance of this project lies in the proposal to parallelize the algorithms which have worked today, which will be developed and technology work on multiprocessor / multicore, that can take its theoretical context to different real applications. While there are several software tools, proprietary or free, for the same purpose many of them become prohibitive in terms of cost, technical support or infrastructure required to run the processes, more importantly, do not incorporate new trends and new algorithms with due expedition, so in this paper is to bring these algorithms to a parallel environment GPU with CUDA architecture that will allow communication between processes performed between processors and GPU's environment will have advantages in time and cost on the use of parallelization used in parallel processing environments processors and cores.
2. State of the Art.
2.1 Graphics Processing Unit and CUDA
CUDA (Compute Unified Device Architecture) is a parallel processing architecture company created by the NVIDIA graphics card manufacturer that aims to harness the processing power of a GPU to achieve increases in performance of the system with which it develops. Found practical applications for this technology in such areas as simulation, video processing, astrophysics, computational biology and chemistry, fluid mechanics, electromagnetic interference, or seismic analysis, ray tracing among others [5].

[image: image6.png]CouicgHea 29 nagbeene AsBocene AaB AaBbCcDC AaBbCCDC AaBbCCDC © ASBECCDI AABBCCDU
TNomal TSnesps. Tiwol Thuo2 Tulo Subtituo Enfasissutl Enfasis Enfasisint. Tetoenn. Cia Ciadesta.. Referencl. Referenci. Titulo del m

T R e O S S S S N A B R S NS T R P RS RN KRR o
1 16.47 96.10
N 2 16.47 94.44)
- 3 20.09 92.54)
- 4 22.39 93.37
B 5 25.23 97.24
- 6 22.00 96.05
7 20.47 97.02
8 17.20 96.29
- 9 16.30 97.38
- 10 14.05 98.12
. 11 16.53 97.38
12 21.52 95.59
13 19.41 97.13
' 14 20.09 94.55

agina: 1 de1 | Palabras: 42 | Espahol (México)

Figure 1. Representation of processing units between CPU and GPU.
Figure 1 Is a representation of the amount of processing units that comprise a CPU and GPU on which there is a clear superiority in numbers of units for testing this work we used a GPU with 448 cores. With CUDA CPU often performs the task manager instructions and information will be stored and processed in the GPU memory and once this process will return the information to the CPU memory to display results only.
2.2 Ant Colony Algorithm
To carry out the research work we use an Ant Colony algorithm to tackle routing problems. This algorithm simulates the behavior of ants in real life, based on how they generate routes from their nest to a food source. Ants communicate by traces of chemicals called pheromones, which lay on the road and will guide through these, the most promising routes are being left with higher pheromone trail to the other [6].

The ant colony algorithms have been used to solve different combinatorial optimization problems, in the algorithm each ant is an agent that can have a simple behavior but not always find quality roads alone, is why is communicated overall the pheromone through [7]. The algorithm used is as follows.

It makes use of the ACO method for solving the problem.
Parameter Initialization

Read instance of the problem

Set initial pheromone

repeat

Generate Ants

For k from 1 through the number of ants Make

Build a solution for ant k

Select the best solution

Update pheromone trails

To Reach the number of iterations

Where the parameters are the number of ants, α: importance of the pheromone, β: importance of visibility, ρ: rate of evaporation of pheromone, τ: initial concentration of the pheromone and the given problem instance by reading file.
Build Solution
For the construction of the solution to each ant is placed in an initial position and from that point is required to get the chance to go to the next step, each path is obtained using the following equation:
[image: image2.png]pi = [zij]1“ [nijl?
77 Y [rij]¢[nif]B

where:

τij: the pheromone concentration of point i and point j.

nij: inverse arc distance between the point i and point j.
so that the probability that k fence ant the damn points i j is given in function of the concentration of the pheromone and distance.
Update pheromone trails
Pheromone updating is performed by the following equation:
τij(t+1)=ρ τij(t)+Δτ
where:

τij (t +1): amount of pheromone for the next iteration

ρ: the pheromone evaporation

τij (t): amount of pheromone present

Δτ: increased pheromone
3. Implemented Algorithm.
We developed first ant colony algorithm sequentially, once with the complete algorithm proceeded to conduct an analysis of each of the steps in order to determine which procedures are dependent on one another, these processes may not be candidates to perform in parallel, and what procedures are independent of these processes are part of the candidates to run in parallel. A first approximation of the parallel implementation of the algorithm can be seen in [8], however only initializations implemented in parallel and where there are functions that are mathematical calculations that can reduce the execution time considerably.
In this work we were able to parallelize processes: distance calculation used instance, placing the initial pheromone, pheromone updating and calculating the probability of cities to each ant. The functions performed under CUDA is shown in the following code.
/************** Start CUDA Functions *************/

/* Get the distance matrix and pheromone*/

__global__ void distanceKernel(float *x, float *y, float *d, float *ph int n)

{ float dx, dy;

int i = threadIdx.x+blockIdx.x*blockDim.x;

int j = threadIdx.y+blockIdx.y*blockDim.y;

dx = x[i] - x[j];

 dy = y[i] - y[j];

 d[j+i*n] = sqrt(pow(dx,2)+pow(dy,2));

 ph[j*n+i] = ph[i*n+j]= ph_base;

 }

/* Get the sum of every TijNij */

__global__ void sumTijNijKernel(float *c, float *p, float *res, int n, int a, int b)

{

//c-> city distance

//p-> pheromone

int i = threadIdx.x+blockIdx.x*blockDim.x;

if(i<n)

res[i]= (float)pow(p[i],a) * (float)pow(c[i],b);

}

__global__ void tijNijKernel(float *c, float *p, float *tn, int n, int a, int b, float sum)

{

//c-> city distance

//p-> pheromone

int i = threadIdx.x+blockIdx.x*blockDim.x;

if(i<n)

tn[i]= (float)((float)pow(p[i],a) * (float)pow(c[i],b)/sum);

}

/************** End CUDA Functions ***************/

4. Results.
It implements an Ant Colony algorithm for solving a TSP in parallel using CUDA architecture, it has several. Tsp benchmarks files which are located on the TSPLIB instances that are used as an example for this type of problem [9].

The experiments were performed with the following values ​​for the instances of the problem:

50 iterations, α 1, β: 5, ρ: 0.01, τ: 0.001, Δτ = 1.01

Burma14.tsp the file shown in Table 1 was obtained the result shown in Figure 2
[image: image1.jpg]8
8
o
S

Table 1. File burma14.tsp

[image: image3.png]20 tspeuda (Ejecutando) - Microsoft Visual Studio - > = |

Archivo Editar Ver Proyecto Generar Depurar Equipo Nsight Datos Herramientas Prucba Ventana Ayuda
=2 L AT R ug n @ [dl -
O& Airwaals

O (5 50 B -

P R A

Headecimal % |3~

femclomis CA\Users\ulio\Documents\Visusl \Project\speuaa ———
(Ambito global Correct File veading | @
const_int ni IELELSECSIURELEE olucion tspeuda’ (L pro
SO [l i of distances oA Soluciénitepeudsullproy
4 [tspeuda

int alpha = 177 6.5
//concentra 54 Dependencias exter|
1] kemel.cu

float concet

anupeneasloeaw

const int
string file

R e

//const int}
//string Fil
//const int}
/1string Fil

Lokl inioink
AN AN IO A S|
noklenbonbhohs!

ESSRERRARRENA
PESRURNR AR RNNY
AONDNEHANDIONR
Sbhinkeaziaiellbbhisl
Sirlrzaniiviniai
ARNDNGHANDIONR
nlbbpnkbonhksli
ENEANNARSANGRN
hplnablbanih
JERRRARAREI RN AN
SR AN AL W
Slbinsuahabhsne

K
4
X
8
7
.
8
3
o
1
4
8
6

nitializing Phen
initializing Ancs
float
float
float feross any key to continue
float

flost

Automitico ~ 10X Pila dellamadas

RN i Varisbles locsles [Inspeccion 1 [LCX AN M. puntos de interr.. BN Ventana Coman... 4 Ventana Inmedia... [Resultados (SRS I Team Ex

[t Col28.

Figure 2. Results of the program to the file burma14.tsp
While for ulysses22.tsp file shown in Table 2 was obtained the result shown in Figure 3.
[image: image4.png]4
1

T masboeDe AsBbCeDe

Thormal

7Sin espa,

Titulo 1

Titulo 2

AaB

Titulo

Subtitulo

Enfasis suti

AaBbCCDC
Enfasis

Enfasis int

AaBbCcDC AaBbCCD

Texto enn.

cita

Cita desta.

Referenci

38.24
39.57
40.56
36.26
33.48
37.56
38.42
37.52
41.23
41.17
36.08
38.47
38.15
37.51
35.49
39.36
38.09
36.09
40.44
40.33
40.37
37.57

20.42
26.15
25.32
23.12
10.54
12.19
13.11
20.44
9.10
13.05
-5.21
15.13
15.35
15.17
14.32
19.56
24.36
23.00
13.57
14.15
14.23
22.56

AABBCCDE AABBCCDL

Referenci

Titulo del

Table 2. File ulysses22.tsp

[image: image5.png][Correct file reading
[nitializing Cities
IMatrix of distances:
0.0 5.4 3.3

7.3 0.711.7 7.9 25.7 5.3 5.1 5.3 6.7 1.4

Bhlhnkebhbeuhbohbnbbinabbbbhivhuhkaihnnhbbznie

ahibslbnnbiinkinunbopinsh bbbk sboviasbbohosing.

13.1 6.1 17.1 13.2 31.6 11.1 10.9 11.2 12.5 6.6

1236 1
135 12.4 5.7 16.2 12.3 30.9 10.4 10.3 10.6 12.1 5.9
11.8 1 - Explorador de solucio... ¥ & X
K 1178 10.2 3.0 14.9 11.2 2.3 8.3 9.0 8.8 8.8 4.7 3
i 164 1 5.610.7 7.9 8.116.8 6.8 6.7 6.1 4.3 10.8 .
g 1. 3 Solucién ‘tspcuda’ (1 proy
1335 1 13 8.3 4.8 37195 3.4 3.2 3.8 3.8 7.6 7 opeua

0.0 7.4 4.9 2.818.5 2.8 2.3 2.3 3.2 6.5 Dependencias exter|
k

7.4 0.011.9 8.225.7 5.4 5.1 5.3 6.4 2.0

4.9 11.9 0.0 4.015.2 6.6 7.9 7.1 7.8 10.6

2.8 8.2 4.0 0.019.0 3.4 3.8 4.2 5.8 6.8
18.5 25.7 15.2 19.9 0.0 20.5 20.7 20.4 19.5 25.0

P T - UL i =Y = 8 S W

2.0 5.4 6.6 3.420.5 8.0 9.4 1.9 3.1 4.5

2.3 5.4 7.0 3.820.7 9.4 0.9 0.7 2.9 4.4

2.3 5.3 7.4 4.220.4 1.0 9.7 0.9 2.2 4.8

3.2 6.4 7.8 5.819.5 3.1 2.9 2.2 0.0 6.5
6.5 2.010.6 6.8 25.0 4.5 4.4 4.8 6.5 0.0

11.3 4.015.6 11.7 29.6 9.2 9.0 9.2 18.4 5.8

10.2 2.9 14.8 11.2 28.2 8.2 7.9 8.0 8.7 4.7

erovseobosbrnssnwenenebBrlalownBulaboslalae

2.4 7.5 4.5 0.919.3 2.5 2.9 3.3 5.0 6.1

2.2 6.9 5.4 1.419.8 2.1 2.5 3.8 4.8 5.5

sobelElosmnanalolvbe!

easbelobbrlrvanabubnEnbbEshabunnbulatbalelng

2.2 6.8 5.2 1.419.9 2.1 2.5 3.0 4.9 5.4

hininnsinhblonanlivhbhivballlbhusbbbhbnsibin bl

ShrwnwewnbrbuuswwawueliBubivoonbelantabaive

9.5 2.113.9 10.2 27.8 7.5 7.2 7.4 8.5 3.5

Shbinbanivilbliinninphpiihnhbinhsbiibinbasuahbhinh i

19 9
Tnitializing Pheronon:
Initializing Ants

IThe hest solution is: 22 4 18 16 2 3 17 1 8 13 14 5 15 12 19 21 7 18 20 6 9 11

2
fiith a DISTANCE of: 101.647934

Press any key to continue... Puntos deinterr.. [Ventana Coman... 8 Ventana Inmedic... |8l Resutados W Team Ex.

Lin510 Col2 Car2 NS

0509 pm. |
B <m0 a0l i f

Figure 3. Results of the program to the file ulysses22.tsp
5. Conclusions and Future Work.
In this paper proposed the implementation of an ant colony algorithm in parallel using CUDA architecture provides us giving us the advantage of using the resources of both the CPU and GPU's computer which we can face greater problems of computational complexity index with a response time less than they would in parallel systems that work only with computers CPU and sequential programming because the GPU's today have more core for processing data compared to current CPU, which means that each of them can work with a portion of the work to be performed, leading to less time consuming in solving the problem.

The resulting system of this project is to make available to the academic and scientific community for free, and in due course can be considered for transfer to companies through the development of systems tailored to the needs of each of the business requires.

As future work is to conduct a comparative study on the execution speed of the algorithm with respect to the best solution found, to determine what percent the speed of the algorithm improves the best result.
Acknowledgements.

This work was partially supported by the SEP through the project PROMEP/103.5/12/3780.
References.

[1] de la Fuente D., Lozano J., Ochoa E. & Díaz M.: Estado del arte de algoritmos basados en colonias de hormigas para la resolución del problema VRP. XV Congreso de Ingeniería de Organización Cartagena, (2011).

[2] Laguna G., Olguín M, Barrón R.: Introducción a la programación de códigos paralelos con CUDA y su ejecución en un GPU multi-hilos. (2011).
[3] Ponce J., Quezada F., Hernandez A., Correa C.: Logistics for the Garbage Collection through the use of Ant Colony Algorithms. En Logistics Management and Optimization through Hybrid Artificial Intelligence Systems Edite by: Carlos Alberto Ochoa Ortiz Zezzatti. Publisher: IGI. ISBN13: 9781466602977, (2012).
[4] Barán B. & Almirón M.: Colonia de Hormigas en un Ambiente Paralelo Asíncrono. XXVIII Conferencia Latinoamericana de Informática CLEI’2002, Montevideo - Uruguay, (2002).
[5] Corporation Nvidia. (2006) CUDA Computer Parallel Computing Platform. Consultado en mayo de 2012. https://developer.nvidia.com/what-cuda
[6] Dorigo M., Maniezzo V., Colorni A.: Ant system: optimization by a colony of cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics, Part B 26(1): 29-41, (1996).
[7] Ponce J., Padilla F., Ochoa A., Padilla A., Ponce de León E., Quezada F.: Ant Colony Algorithm for Clustering through of Cliques. Artificial Intelligence & Applications. Gelbukh (Ed.): SMIA. ISBN-978-607-95367-0-1. pp. 29–34, 2009.
[8] Ponce J., Hernandez A., Ochoa A., Quezada F., Ponce de León E. & Zavala C.: Solving Routing Problems Using Ant Colonies Optimization, and a Parallel Architecture with GPUs. Book: Logistic: Perspectives, Approaches and Challenges, Edited by: Jinghua Cheung and Huan Song, Nova Publishers, ISBN: 978-1-62618-087-1, (2013).
[9] TSPLIB. Librería en internet con benchmarks reconocidos para problemas de ruteo. http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/ consultado abril de 2012.

